Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Signal Transduct Target Ther ; 8(1): 179, 2023 05 04.
Article in English | MEDLINE | ID: covidwho-2313877

ABSTRACT

The emergence of adapted variants of the SARS-CoV-2 virus has led to a surge in breakthrough infections worldwide. A recent analysis of immune responses in people who received inactivated vaccines has revealed that individuals with no prior infection have limited resistance to Omicron and its sub-lineages, while those with previous infections exhibit a significant amount of neutralizing antibodies and memory B cells. However, specific T-cell responses remain largely unaffected by the mutations, indicating that T-cell-mediated cellular immunity can still provide protection. Moreover, the administration of a third dose of vaccine has resulted in a marked increase in the spectrum and duration of neutralizing antibodies and memory B cells in vivo, which has enhanced resistance to emerging variants such as BA.2.75 and BA.2.12.1. These results highlight the need to consider booster immunization for previously infected individuals and the development of novel vaccination strategies. The rapid spread of adapted variants of the SARS-CoV-2 virus presents a significant challenge to global health. The findings from this study underscore the importance of tailoring vaccination strategies based on individual immune backgrounds and the potential need for booster shots to combat emerging variants. Continued research and development are crucial to discovering new immunization strategies that will effectively protect public health against the evolving virus.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2 , B-Lymphocytes , Antibodies, Neutralizing/genetics
2.
Antib Ther ; 6(2): 76-86, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2294418

ABSTRACT

Background: Rapid and efficient strategies are needed to discover neutralizing antibodies (nAbs) from B cells derived from virus-infected patients. Methods: Here, we report a high-throughput single-B-cell cloning method for high-throughput isolation of nAbs targeting diverse epitopes on the SARS-CoV-2-RBD (receptor binding domain) from convalescent COVID-19 patients. This method is simple, fast and highly efficient in generating SARS-CoV-2-neutralizing antibodies from COVID-19 patients' B cells. Results: Using this method, we have developed multiple nAbs against distinct SARS-CoV-2-RBD epitopes. CryoEM and crystallography revealed precisely how they bind RBD. In live virus assay, these nAbs are effective in blocking viral entry to the host cells. Conclusion: This simple and efficient method may be useful in developing human therapeutic antibodies for other diseases and next pandemic.

3.
J Med Virol ; 95(2): e28440, 2023 02.
Article in English | MEDLINE | ID: covidwho-2268814

ABSTRACT

Emergence of various circulating SARS-CoV-2 variants of concern (VOCs) promotes the identification of pan-sarbecovirus vaccines and broadly neutralizing antibodies (bNAbs). Here, to characterize monoclonal antibodies cross-reactive against both SARS-CoV-1 and SARS-CoV-2 and to search the criterion for bNAbs against all emerging SARS-CoV-2, we isolated several SARS-CoV-1-cross-reactive monoclonal antibodies (mAbs) from a wildtype SARS-CoV-2 convalescent donor. These antibodies showed broad binding capacity and cross-neutralizing potency against various SARS-CoV-2 VOCs, including B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), but failed to efficiently neutralize Omicron variant and its sublineages. Structural analysis revealed how Omicron sublineages, but not other VOCs, efficiently evade an antibody family cross-reactive against SARS-CoV-1 through their escape mutations. Further evaluation of a series of SARS-CoV-1/2-cross-reactive bNAbs showed a negative correlation between the neutralizing activities against SARS-CoV-1 and SARS-CoV-2 Omicron variant. Together, these results suggest the necessity of using cross-neutralization against SARS-CoV-1 and SARS-CoV-2 Omicron as criteria for rational design and development of potent pan-sarbecovirus vaccines and bNAbs.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Vaccines , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Monoclonal , Broadly Neutralizing Antibodies , Antibodies, Viral , Spike Glycoprotein, Coronavirus
4.
Nature ; 612(7941): 748-757, 2022 12.
Article in English | MEDLINE | ID: covidwho-2151056

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) and several bat coronaviruses use dipeptidyl peptidase-4 (DPP4) as an entry receptor1-4. However, the receptor for NeoCoV-the closest known MERS-CoV relative found in bats-remains unclear5. Here, using a pseudotype virus entry assay, we found that NeoCoV and its close relative, PDF-2180, can efficiently bind to and use specific bat angiotensin-converting enzyme 2 (ACE2) orthologues and, less favourably, human ACE2 as entry receptors through their receptor-binding domains (RBDs) on the spike (S) proteins. Cryo-electron microscopy analysis revealed an RBD-ACE2 binding interface involving protein-glycan interactions, distinct from those of other known ACE2-using coronaviruses. We identified residues 337-342 of human ACE2 as a molecular determinant restricting NeoCoV entry, whereas a NeoCoV S pseudotyped virus containing a T510F RBD mutation efficiently entered cells expressing human ACE2. Although polyclonal SARS-CoV-2 antibodies or MERS-CoV RBD-specific nanobodies did not cross-neutralize NeoCoV or PDF-2180, an ACE2-specific antibody and two broadly neutralizing betacoronavirus antibodies efficiently inhibited these two pseudotyped viruses. We describe MERS-CoV-related viruses that use ACE2 as an entry receptor, underscoring a promiscuity of receptor use and a potential zoonotic threat.


Subject(s)
Angiotensin-Converting Enzyme 2 , Chiroptera , Middle East Respiratory Syndrome Coronavirus , Receptors, Virus , Virus Internalization , Animals , Humans , Angiotensin-Converting Enzyme 2/metabolism , Chiroptera/metabolism , Chiroptera/virology , Cryoelectron Microscopy , Middle East Respiratory Syndrome Coronavirus/classification , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Middle East Respiratory Syndrome Coronavirus/metabolism , Protein Binding , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Dipeptidyl Peptidase 4/metabolism , Viral Zoonoses
5.
Cell Host Microbe ; 30(11): 1527-1539.e5, 2022 11 09.
Article in English | MEDLINE | ID: covidwho-2104544

ABSTRACT

Recently emerged SARS-CoV-2 Omicron subvariant, BA.2.75, displayed a growth advantage over circulating BA.2.38, BA.2.76, and BA.5 in India. However, the underlying mechanisms for enhanced infectivity, especially compared with BA.5, remain unclear. Here, we show that BA.2.75 exhibits substantially higher affinity for host receptor angiotensin-converting enzyme 2 (ACE2) than BA.5 and other variants. Structural analyses of BA.2.75 spike shows its decreased thermostability and increased frequency of the receptor binding domain (RBD) in the "up" conformation under acidic conditions, suggesting enhanced low-pH-endosomal cell entry. Relative to BA.4/BA.5, BA.2.75 exhibits reduced evasion of humoral immunity from BA.1/BA.2 breakthrough-infection convalescent plasma but greater evasion of Delta breakthrough-infection convalescent plasma. BA.5 breakthrough-infection plasma also exhibits weaker neutralization against BA.2.75 than BA.5, mainly due to BA.2.75's distinct neutralizing antibody (NAb) escape pattern. Antibody therapeutics Evusheld and Bebtelovimab remain effective against BA.2.75. These results suggest BA.2.75 may prevail after BA.4/BA.5, and its increased receptor-binding capability could support further immune-evasive mutations.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Serotherapy
6.
Small Methods ; : e2200932, 2022 Oct 27.
Article in English | MEDLINE | ID: covidwho-2085203

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies are shown to be effective therapeutics for providing coronavirus disease 2019 (COVID-19) protection. However, recurrent variants arise and facilitate significant escape from current antibody therapeutics. Bispecific antibodies (bsAbs) represent a unique platform to increase antibody breadth and to reduce neutralization escape. Herein, a novel immunoglobulin G-variable domains of heavy-chain-only antibody (IgG-VHH) format bsAb derived from a potent human antibody R15-F7 and a humanized nanobody P14-F8-35 are rationally engineered. The resulting bsAb SYZJ001 efficiently neutralizes wild-type SARS-CoV-2 as well as the alpha, beta, gamma, and delta variants, with superior efficacy to its parental antibodies. Cryo-electron microscopy structural analysis reveals that R15-F7 and P14-F8-35 bind to nonoverlapping epitopes within the RBD and sterically hindered ACE2 receptor binding. Most importantly, SYZJ001 shows potent prophylactic and therapeutic efficacy against SARS-CoV-2 in three established mouse models. Collectively, the current results demonstrate that the novel bsAb format is feasible and effective, suggesting great potential as an inspiring antiviral strategy.

7.
Economic and Social Development: Book of Proceedings ; : 148-153, 2022.
Article in English | ProQuest Central | ID: covidwho-2084273

ABSTRACT

This paper explains why the world's economies suffered higher inflation rates after the coronavirus pandemic. It was expected that deflation and recession would hit the economy;however, supply-side effects and government monetary andfiscal policy responses managed to maintain a relatively solid aggregate demand, ultimately causing high inflation. As a result, it was found that the US economy has grown around 5.7 percent in 2021, making it the highest inflation rate since 1984. Furthermore, the paper highlights another significant reason for such high inflation is the low-interest rates given by the US and UK central banks. While those impacts were significant, the research shows that the global supply chain crisis caused a significant decline and even halted electronics production, leading to increased prices due to the scarcity of the products. Moreover, the paper shows that the Russia-Ukraine war had a significant role in the world's inflation, especially in Europe. It was seen that since Europe imports much of its oil and natural gas from Russia, energy prices rose exponentially as the conflict continued. In addition, more European countries have sanctioned Russia since its invasion by banning exports or raising import tariffs, reducing supply and worsening inflation. The war has also devastated Ukrainian agriculture, driving up food prices. Lastly, the paper states that while there is contradicting opinion on what the inflation rate will be in 2023, most forecasts predict that the inflation rate would decrease to a level of around 2.6 percent in 2024 or in the long term.

8.
Cell host & microbe ; 2022.
Article in English | EuropePMC | ID: covidwho-2045135

ABSTRACT

Recently emerged SARS-CoV-2 Omicron subvariant, BA.2.75, displayed a growth advantage over circulating BA.2.38, BA.2.76 and BA.5 in India. However, the underlying mechanisms for enhanced infectivity, especially compared to BA.5, remain unclear. Here we show BA.2.75 exhibits substantially higher affinity for host receptor ACE2 than BA.5 and other variants. Structural analyses of BA.2.75 Spike shows its decreased thermostability and increased frequency of the receptor binding domain (RBD) in the “up” conformation under acidic conditions, suggesting enhanced low-pH-endosomal cell entry. Relative to BA.4/BA.5, BA.2.75 exhibits reduced evasion of humoral immunity from BA.1/BA.2 breakthrough-infection convalescent plasma, but greater evasion of Delta breakthrough-infection convalescent plasma. BA.5 breakthrough infection plasma also exhibits weaker neutralization against BA.2.75 than BA.5, mainly due to BA.2.75’s distinct neutralizing antibody escape pattern. Antibody therapeutics Evusheld and Bebtelovimab remain effective against BA.2.75. These results suggest BA.2.75 may prevail after BA.4/BA.5, and its increased receptor-binding capability could support further immune-evasive mutations. Graphical SARS-CoV-2 BA.2.75 is growing rapidly and globally. Cao et al. solved the structure of BA.2.75 spike and show it has stronger binding to human ACE2 than previous variants. BA.2.75 also exhibited distinct antigenicity compared to BA.5, escaping neutralizing antibodies targeting various epitopes and evading convalescent plasma from BA.5 breakthrough infections.

10.
Signal Transduct Target Ther ; 7(1): 256, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1960334

ABSTRACT

A steep rise in Omicron reinfection cases suggests that this variant has increased immune evasion ability. To evaluate its antigenicity relationship with other variants, antisera from guinea pigs immunized with spike protein of SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs) were cross-tested against pseudotyped variants. The neutralization activity against Omicron was markedly reduced when other VOCs or VOIs were used as immunogens, and Omicron (BA.1)-elicited sera did not efficiently neutralize the other variants. However, a Beta or Omicron booster, when administered as the 4th dose 3-months after the 3rd dose of any of the variants, could elicit broad neutralizing antibodies against all of the current variants including Omicron BA.1. Further analysis with 280 available antigen-antibody structures and quantification of immune escape from 715 reported neutralizing antibodies provide explanations for the observed differential immunogenicity. Three distinct clades predicted using an in silico algorithm for clustering of sarbecoviruses based on immune escape provide key information for rational design of vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral/genetics , COVID-19/genetics , Cluster Analysis , Guinea Pigs , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
11.
Nature ; 608(7923): 593-602, 2022 08.
Article in English | MEDLINE | ID: covidwho-1900499

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sublineages BA.2.12.1, BA.4 and BA.5 exhibit higher transmissibility than the BA.2 lineage1. The receptor binding and immune-evasion capability of these recently emerged variants require immediate investigation. Here, coupled with structural comparisons of the spike proteins, we show that BA.2.12.1, BA.4 and BA.5 (BA.4 and BA.5 are hereafter referred collectively to as BA.4/BA.5) exhibit similar binding affinities to BA.2 for the angiotensin-converting enzyme 2 (ACE2) receptor. Of note, BA.2.12.1 and BA.4/BA.5 display increased evasion of neutralizing antibodies compared with BA.2 against plasma from triple-vaccinated individuals or from individuals who developed a BA.1 infection after vaccination. To delineate the underlying antibody-evasion mechanism, we determined the escape mutation profiles2, epitope distribution3 and Omicron-neutralization efficiency of 1,640 neutralizing antibodies directed against the receptor-binding domain of the viral spike protein, including 614 antibodies isolated from people who had recovered from BA.1 infection. BA.1 infection after vaccination predominantly recalls humoral immune memory directed against ancestral (hereafter referred to as wild-type (WT)) SARS-CoV-2 spike protein. The resulting elicited antibodies could neutralize both WT SARS-CoV-2 and BA.1 and are enriched on epitopes on spike that do not bind ACE2. However, most of these cross-reactive neutralizing antibodies are evaded by spike mutants L452Q, L452R and F486V. BA.1 infection can also induce new clones of BA.1-specific antibodies that potently neutralize BA.1. Nevertheless, these neutralizing antibodies are largely evaded by BA.2 and BA.4/BA.5 owing to D405N and F486V mutations, and react weakly to pre-Omicron variants, exhibiting narrow neutralization breadths. The therapeutic neutralizing antibodies bebtelovimab4 and cilgavimab5 can effectively neutralize BA.2.12.1 and BA.4/BA.5, whereas the S371F, D405N and R408S mutations undermine most broadly sarbecovirus-neutralizing antibodies. Together, our results indicate that Omicron may evolve mutations to evade the humoral immunity elicited by BA.1 infection, suggesting that BA.1-derived vaccine boosters may not achieve broad-spectrum protection against new Omicron variants.


Subject(s)
Antibodies, Viral , Antigenic Drift and Shift , COVID-19 , Epitopes, B-Lymphocyte , Immune Tolerance , Mutation , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigenic Drift and Shift/genetics , Antigenic Drift and Shift/immunology , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , Immunity, Humoral , Immunization, Secondary , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
13.
Signal Transduct Target Ther ; 7(1): 124, 2022 04 18.
Article in English | MEDLINE | ID: covidwho-1795804

ABSTRACT

Variants of concern (VOCs) like Delta and Omicron, harbor a high number of mutations, which aid these viruses in escaping a majority of known SARS-CoV-2 neutralizing antibodies (NAbs). In this study, Rhesus macaques immunized with 2-dose inactivated vaccines (Coronavac) were boosted with an additional dose of homologous vaccine or an RBD-subunit vaccine, or a bivalent inactivated vaccine (Beta and Delta) to determine the effectiveness of sequential immunization. The booster vaccination significantly enhanced the duration and levels of neutralizing antibody titers against wild-type, Beta, Delta, and Omicron. Animals administered with an indicated booster dose and subsequently challenged with Delta or Omicron variants showed markedly reduced viral loads and improved histopathological profiles compared to control animals, indicating that sequential immunization could protect primates against Omicron. These results suggest that sequential immunization of inactivated vaccines or polyvalent vaccines could be a potentially effective countermeasure against newly emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Macaca mulatta , SARS-CoV-2/genetics , Vaccination , Vaccines, Inactivated/genetics
14.
Innovation (Camb) ; 3(2): 100221, 2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1713028

ABSTRACT

The highly pathogenic and readily transmissible SARS-CoV-2 has caused a global coronavirus pandemic, urgently requiring effective countermeasures against its rapid expansion. All available vaccine platforms are being used to generate safe and effective COVID-19 vaccines. Here, we generated a live-attenuated candidate vaccine strain by serial passaging of a SARS-CoV-2 clinical isolate in Vero cells. Deep sequencing revealed the dynamic adaptation of SARS-CoV-2 in Vero cells, resulting in a stable clone with a deletion of seven amino acids (N679SPRRAR685) at the S1/S2 junction of the S protein (named VAS5). VAS5 showed significant attenuation of replication in multiple human cell lines, human airway epithelium organoids, and hACE2 mice. Viral fitness competition assays demonstrated that VAS5 showed specific tropism to Vero cells but decreased fitness in human cells compared with the parental virus. More importantly, a single intranasal injection of VAS5 elicited a high level of neutralizing antibodies and prevented SARS-CoV-2 infection in mice as well as close-contact transmission in golden Syrian hamsters. Structural and biochemical analysis revealed a stable and locked prefusion conformation of the S trimer of VAS5, which most resembles SARS-CoV-2-3Q-2P, an advanced vaccine immunogen (NVAX-CoV2373). Further systematic antigenic profiling and immunogenicity validation confirmed that the VAS5 S trimer presents an enhanced antigenic mimic of the wild-type S trimer. Our results not only provide a potent live-attenuated vaccine candidate against COVID-19 but also clarify the molecular and structural basis for the highly attenuated and super immunogenic phenotype of VAS5.

15.
Nature ; 603(7903): 919-925, 2022 03.
Article in English | MEDLINE | ID: covidwho-1655591

ABSTRACT

Omicron (B.1.1.529), the most heavily mutated SARS-CoV-2 variant so far, is highly resistant to neutralizing antibodies, raising concerns about the effectiveness of antibody therapies and vaccines1,2. Here we examined whether sera from individuals who received two or three doses of inactivated SARS-CoV-2 vaccine could neutralize authentic Omicron. The seroconversion rates of neutralizing antibodies were 3.3% (2 out of 60) and 95% (57 out of 60) for individuals who had received 2 and 3 doses of vaccine, respectively. For recipients of three vaccine doses, the geometric mean neutralization antibody titre for Omicron was 16.5-fold lower than for the ancestral virus (254). We isolated 323 human monoclonal antibodies derived from memory B cells in triple vaccinees, half of which recognized the receptor-binding domain, and showed that a subset (24 out of 163) potently neutralized all SARS-CoV-2 variants of concern, including Omicron. Therapeutic treatments with representative broadly neutralizing monoclonal antibodies were highly protective against infection of mice with SARS-CoV-2 Beta (B.1.351) and Omicron. Atomic structures of the Omicron spike protein in complex with three classes of antibodies that were active against all five variants of concern defined the binding and neutralizing determinants and revealed a key antibody escape site, G446S, that confers greater resistance to a class of antibodies that bind on the right shoulder of the receptor-binding domain by altering local conformation at the binding interface. Our results rationalize the use of three-dose immunization regimens and suggest that the fundamental epitopes revealed by these broadly ultrapotent antibodies are rational targets for a universal sarbecovirus vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Memory B Cells , SARS-CoV-2 , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Antibodies, Viral/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Disease Models, Animal , Humans , Memory B Cells/immunology , Mice , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
16.
Cell ; 185(5): 860-871.e13, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1650841

ABSTRACT

The SARS-CoV-2 Omicron variant with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the spike (S) from Omicron reveals amino acid substitutions forging interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of the viral fusion step. Alterations in local conformation, charge, and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Structure of the Omicron S bound with human ACE2, together with the analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members, as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies, sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.


Subject(s)
Immune Evasion/physiology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Humans , Mutagenesis, Site-Directed , Neutralization Tests , Protein Binding , Protein Domains/immunology , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance , Virus Attachment
17.
Nature ; 602(7898): 657-663, 2022 02.
Article in English | MEDLINE | ID: covidwho-1616990

ABSTRACT

The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A-F)-a grouping that is highly concordant with knowledge-based structural classifications3-5. Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A-D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309)6 and group F (for example, CR3022)7, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/classification , Antibodies, Viral/classification , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Cells, Cultured , Convalescence , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Humans , Immune Sera/immunology , Models, Molecular , Mutation , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
18.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Article in English | MEDLINE | ID: covidwho-1517667

ABSTRACT

The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediates membrane fusion to allow entry of the viral genome into host cells. To understand its detailed entry mechanism and develop a specific entry inhibitor, in situ structural information on the SARS-CoV-2 spike protein in different states is urgent. Here, by using cryo-electron tomography, we observed both prefusion and postfusion spikes in ß-propiolactone-inactivated SARS-CoV-2 virions and solved the in situ structure of the postfusion spike at nanometer resolution. Compared to previous reports, the six-helix bundle fusion core, the glycosylation sites, and the location of the transmembrane domain were clearly resolved. We observed oligomerization patterns of the spikes on the viral membrane, likely suggesting a mechanism of fusion pore formation.


Subject(s)
SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/chemistry , Amino Acid Motifs , Animals , Chlorocebus aethiops , Cryoelectron Microscopy , Electron Microscope Tomography , Glycosylation , Protein Domains , Protein Multimerization , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
19.
Nat Commun ; 12(1): 5654, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1440471

ABSTRACT

There is an urgent need for animal models to study SARS-CoV-2 pathogenicity. Here, we generate and characterize a novel mouse-adapted SARS-CoV-2 strain, MASCp36, that causes severe respiratory symptoms, and mortality. Our model exhibits age- and gender-related mortality akin to severe COVID-19. Deep sequencing identified three amino acid substitutions, N501Y, Q493H, and K417N, at the receptor binding domain (RBD) of MASCp36, during in vivo passaging. All three RBD mutations significantly enhance binding affinity to its endogenous receptor, ACE2. Cryo-electron microscopy analysis of human ACE2 (hACE2), or mouse ACE2 (mACE2), in complex with the RBD of MASCp36, at 3.1 to 3.7 Å resolution, reveals the molecular basis for the receptor-binding switch. N501Y and Q493H enhance the binding affinity to hACE2, whereas triple mutations at N501Y/Q493H/K417N decrease affinity and reduce infectivity of MASCp36. Our study provides a platform for studying SARS-CoV-2 pathogenesis, and unveils the molecular mechanism for its rapid adaptation and evolution.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites/genetics , COVID-19/mortality , COVID-19/virology , Disease Models, Animal , Female , Humans , Male , Mice , Protein Binding/genetics , Protein Domains/genetics , SARS-CoV-2/genetics , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL